Please forgive the slight inconvenience in creating a new account. Due to juvenile delinquents spamming garbage to the site, we had to install a "Captcha", which can differentiate a spam bot from a human. Once you open your account, confirm it by returning the email, and identifying yourself, we will give you edit privileges. Just request them by leaving a message at click here.

Gluten

From English WikiChiro
Jump to: navigation, search
Sources of gluten. Clockwise from top: High-gluten wheat flour, European spelt, barley, rolled rye flakes.

Gluten (from Latin gluten, "glue") is a protein composite found in wheat and related grains, including barley and rye. Gluten gives elasticity to dough, helping it rise and keep its shape and often gives the final product a chewy texture. Gluten is used in cosmetics, hair products, and other dermatological preparations.[1]

Gluten is the composite of a gliadin and a glutenin, which is conjoined with starch in the endosperm of various grass-related grains. The prolamin and glutelin from wheat (gliadin, which is alcohol-soluble, and glutenin, which is only soluble in dilute acids or alkalis) constitute about 80% of the protein contained in wheat fruit. Being insoluble in water, they can be purified by washing away the associated starch. Worldwide, gluten is a source of protein, both in foods prepared directly from sources containing it, and as an additive to foods otherwise low in protein.

The fruit of most flowering plants have endosperms with stored protein to nourish embryonic plants during germination. True gluten, with gliadin and glutenin, is limited to certain members of the grass family. The stored proteins of maize and rice are sometimes called glutens, but their proteins differ from true gluten.

About 1 in 133 people in developed nations have intolerance to gluten.[2] Gluten sensitivity is classified as intolerance, not an allergy.

Extraction

Gluten is extracted from flour by kneading the flour, agglomerating the gluten into an elastic network, a dough, and then washing out the starch. Starch granules disperse in cold/low temperature water, and the dispersed starch will be sedimented and dried.[3] If a saline solution is used instead of water, a purer protein is obtained, with certain harmless impurities going into the solution with the starch. Where starch is the prime product, cold water is the favored solvent because the impurities stay with the gluten.

In home or restaurant cooking, a ball of wheat flour dough is kneaded under water until the starch disperses out. In industrial production, a slurry of wheat flour is kneaded vigorously by machinery until the gluten agglomerates into a mass. This mass is collected by centrifugation, then transported through several stages integrated in a continuous process.[4] Approximately 65% of the water in the wet gluten is removed by means of a screw press; the remainder is sprayed through an atomizer nozzle into a drying chamber, where it remains at an elevated temperature a short time to evaporate the water without denaturing the gluten. The process yields a flour-like powder with a 7% moisture content, which is air cooled and pneumatically transported to a receiving vessel. In the final step, the collected gluten is sifted and milled to produce a uniform product.[5]

Uses

Wheat, a prime source of gluten

Bread products

Gluten forms when glutenin molecules cross-link to form a sub-microscopic network attached to gliadin, which contributes viscosity (thickness) and extensibility to the mix.[6] If this dough is leavened with yeast, fermentation produces carbon dioxide bubbles, which, trapped by the gluten network, cause the dough to rise. Baking coagulates the gluten, which, along with starch, stabilizes the shape of the final product. Gluten content has been implicated as a factor in the staling of bread, possibly because it binds water through hydration.[7]

The development of gluten (i.e., enhancing its elasticity) affects the texture of the baked goods. Gluten's attainable elasticity is proportional to its content of glutenins with low molecular weights as this portion contains the preponderance of the sulfur atoms responsible for the cross-linking in the network.[8][9] More refining (of the gluten) leads to chewier products such as pizza and bagels, while less refining yields tender baked goods such as pastry products.[10]

Generally, bread flours are high in gluten (hard wheat); pastry flours have a lower gluten content. Kneading promotes the formation of gluten strands and cross-links, creating baked products that are chewier in proportion to the length of kneading. An increased moisture content in the dough enhances gluten development,[10] and very wet doughs left to rise for a long time require no kneading (see no-knead bread). Shortening inhibits formation of cross-links and is used, along with diminished water and less kneading, when a tender and flaky product, such as a pie crust, is desired.

The strength and elasticity of gluten in flour is measured in the baking industry using a farinograph. This gives the baker a measurement of quality for different varieties of flours in developing recipes for various baked goods.[citation needed]

Added gluten

Gluten, when dried and milled to a powder and added to ordinary flour dough, improves a dough's ability to rise and increases the bread's structural stability and chewiness.[11] Gluten-added dough must be worked vigorously to induce it to rise to its full capacity; an automatic bread machine or food processor may be required for kneading.[12] The added gluten provides supplemental protein to products with low or nonexistent protein levels.[citation needed]

Imitation meats

Gluten is often used in imitation meats (such as this mock "duck") to provide supplemental protein and variety in vegetarian diets.

Gluten, especially wheat gluten, is often the basis for imitation meats resembling beef, chicken, duck (see mock duck), fish, and pork. When cooked in broth, gluten absorbs some of the surrounding liquid (including the taste) and becomes firm to the bite.[citation needed]

Added to other foods

Gluten is often present in beer and soy sauce, and can be used as a stabilizing agent in more unexpected food products, such as ice cream and ketchup.[13][14] Foods of this kind raise a problem, because the hidden gluten constitutes a hazard for people with celiac disease.

Animal feed

The protein content of some pet foods may also be enhanced by adding gluten.[15]

Adverse reactions

Gluten is known to cause adverse health issues ranging from bloating, gas, diarrhea and vomiting to migraine headaches and joint pain in those who suffer from gluten sensitivity, primarily as a result of coeliac disease (spelled "celiac" in American English) and including non-celiac gluten sensitivity and wheat allergy.

Celiac disease is an inherited autoimmune disorder that affects the digestive process of the small intestine.

Non-celiac gluten sensitivity, (what many call “gluten intolerance”) causes the body to mount a stress response (often GI symptoms) different from the immunological response that occurs in those who have celiac disease (which most often causes intestinal tissue damage).

As with most allergies, a wheat allergy causes the immune system to respond to a food protein because it considers it dangerous to the body when it actually isn’t. This immune response is often time-limited and does not cause lasting harm to body tissues.

[16]

In 2009 research showed between 0.5 and 1.0 percent of people in the US and UK are sensitive to gluten due to coeliac disease.[17][18][19] It probably occurs with comparable frequencies among all wheat-eating populations in the world.[20] Coeliac disease has no cure but is manageable with a gluten-free diet. Wheat allergy and celiac disease are different disorders.[21]

Labeling

International Labeling Standards

The Codex Alimentarius international standards for food labeling has a standard relating to the labeling of products as "gluten-free". It only applies to foods that would normally contain gluten.[22]

Labeling in Canada

Labels for all food products sold in Canada must clearly identify the presence of gluten if it is present at a level greater than 10 ppm.[23]

Labeling in the UK

In the United Kingdom, only cereals must be labelled; labelling of other products is voluntary.[24]

Labeling in the US

In the United States, gluten might not be listed on labels, because the US Food and Drug Administration (FDA) has historically classified gluten as GRAS ("generally recognized as safe"). In August 2013, FDA issued a final rule to define the term “gluten-free” for voluntary use in the labeling of foods i.e. "presence of gluten in the food must be less than 20 ppm."[25]

References

Citations

  1. Harding, Anne (31 October 2011). "Gluten in cosmetics may pose hidden threat to celiac patients". CNN Health. http://thechart.blogs.cnn.com/2011/10/31/gluten-in-cosmetics-may-pose-hidden-threat-to-celiac-patients/. Retrieved 21 October 2012. 
  2. "Gluten intolerance rising in developed countries". Journal Sentinel (Milwaukee). 27 June 2010. http://www.jsonline.com/features/food/92134239.html. Retrieved 5 July 2013. 
  3. "Extracting Gluten from Flour". Chaos – it's not just a theory…. 20 June 2010. http://chaos-its-not-just-a-theory.com/2010/06/20/extracting-gluten-from-flour/. Retrieved 21 October 2012. 
  4. "Wheat Starch and Wheat Gluten". GEA Westfalia Separator Group. http://www.westfalia-separator.com/applications/renewable-resources/wheat-starch-wheat-gluten.html. Retrieved 19 October 2011. 
  5. "Wheat". GEA Barr-Rosin. http://www.barr-rosin.com/applications/wheat.asp. Retrieved 8 September 2009. 
  6. Woychick, JH. "The Gluten Proteins and Deamidated Soluble Wheat Protein". http://www.friedli.com/research/PhD/gluten/chap2.html. Retrieved 8 September 2009. 
  7. Sahlstrom, S. & Brathen, E. (1997). "Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling". Food Chemistry, 58, 1, 75-80. Effects of wheat variety and processing conditions in experimental bread-baking studied by univariate and multivariate analysis.
  8. Edwards, N. M.; Mulvaney, S. J.; Scanlon, M. G.; Dexter, J. E. (2003). "Role of gluten and its components in determining durum semolina dough viscoelastic properties". Cereal chemistry 80 (6): 755–763. doi:10.1094/CCHEM.2003.80.6.755. http://cat.inist.fr/?aModele=afficheN&cpsidt=15273405. Retrieved 2007-08-14. 
  9. Tosi, Paola; Masci, Stefania; Giovangrossi, Angela2; D'Ovidio, Renato; Bekes, Frank; Larroque, Oscar; Napier, Johnathan; Shewry, Peter (September 2005). "Modification of the Low Molecular Weight (LMW) Glutenin Composition of Transgenic Durum Wheat: Effects on Glutenin Polymer Size and Gluten Functionality". Molecular Breeding 16 (2): 113–126. doi:10.1007/s11032-005-5912-1. http://www.ingentaconnect.com/content/klu/molb/2005/00000016/00000002/00005912. Retrieved 2007-08-14. 
  10. 10.0 10.1 "Baking Technology, Bread". Bakersassist. http://www.bakersassist.nl/processing5-2.htm. Retrieved 2007-08-14. 
  11. Amendola, J.; Rees, N.; & Lundberg, D. E. (2002). Understanding Baking. 
  12. Eckhardt, L.W. & Butts, D.C. (1997). Rustic European Breads from your Bread Machine. 
  13. "What Does Gluten-Free Mean?". Spiritfoods. http://spiritfoods.net/what-does-gluten-free-mean/. Retrieved 21 October 2012. 
  14. A Harvard teaching hospital. "Following a Gluten-free Diet". Beth Israel Deaconess Medical Center. http://bidmc.harvard.edu/default.asp?leaf_id=12799. [dead link]
  15. "Pet Foods". International Wheat Gluten Association. Archived from the original on 2007-10-07. http://web.archive.org/web/20071007175039/http://www.iwga.net/04_pet.htm. Retrieved 14 August 2007. 
  16. http://www.cureceliacdisease.org/archives/faq/what-is-the-difference-between-gluten-intolerance-gluten-sensitivity-and-wheat-allergy
  17. "Celiac Disease". National Digestive Diseases Information Clearing House. National Institutes of Health (NIH). 2004. http://digestive.niddk.nih.gov/ddiseases/pubs/celiac/index.htm. Retrieved 8 September 2009. 
  18. "Celiac disease". Consensus Development Panel on Celiac Disease. National Institutes of Health (NIH). 2005. http://www.guideline.gov/summary/summary.aspx?doc_id=5692&nbr=0. Retrieved 2007-08-14. 
  19. "Coeliac Disease". What is coeliac disease?. Coeliac UK. http://www.coeliac.org.uk/coeliac-disease/what-is-coeliac-disease. Retrieved 18 April 2013. 
  20. van Heel D, West J (2006). "Recent advances in coeliac disease". Gut 55 (7): 1037–46. doi:10.1136/gut.2005.075119. PMID 16766754. PMC 1856316. http://gut.bmjjournals.com/cgi/content/full/55/7/1037. 
  21. "Food intolerance and coeliac disease" (PDF). Food Standards Agency. September 2006. http://www.food.gov.uk/multimedia/pdfs/allergyfactsheettwo.pdf. Retrieved 8 September 2009. 
  22. "Codex Standard For "Gluten-Free Foods" CODEX STAN 118-1981" (PDF). Codex Alimentarius. February 22, 2006. http://www.codexalimentarius.org/download/standards/291/cxs_118e.pdf. 
  23. Canadian Celiac Association
  24. "Guidance Notes on the Food Labelling (Amendment) (No. 2) Regulations 2004" (PDF). Food Standards Agency. November 2005. http://www.food.gov.uk/multimedia/pdfs/labelamendguid21nov05.pdf. 
  25. http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Allergens/ucm362880.htm

Bibliography